An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification

نویسندگان

  • Muhammad Faisal Siddiqui
  • Ahmed Wasif Reza
  • Jeevan Kanesan
  • Gajendra P. S. Raghava
چکیده

A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.

منابع مشابه

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Determination of the Most Important Diagnostic Criteria for COVID-19: A Step forward to Design an Intelligent Clinical Decision Support System

   Background & Objective: Since the clinical and epidemiologic characteristics of coronavirus disease 2019 (COVID-19) is not well known yet, investigating its origin, etiology, diagnostic criteria, clinical manifestations, risk factors, treatments, and other related aspects is extremely important. In this situation, clinical experts face many uncertainties to make decision about COVID-19 progn...

متن کامل

MRI Brain Tumor Classification Using SVM and Histogram Based Image Segmentation

A brain tumor arises due to an abnormal growth of cells that have proliferated in an uncontrolled manner. When normal cells grow old or get injured, they either undergo cell death or get repaired by own. Research shows that people affected by brain tumors die due to their inaccurate detection. In this paper,proposed an intelligent classification technique to recognize normal and abnormal MRI br...

متن کامل

Decision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks

Introduction: Age-related macular degeneration (AMD) is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography...

متن کامل

Determination of Minimum Data Set for Designing a Diagnosis Decision Support System and Medication Follow-Up for Multiple Sclerosis

Background and Purpose: Diagnosis of multiple sclerosis (MS) is complicated because of the lack of definite factor. Decision support systems are expert systems which help physicians in decision-making process. First step in designing the system is identification of a minimum dataset (MDS). This study aimed to determine minimum dataset required to design diagnosis decision support system. Mater...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015